Distinguishing Chromatic Number of Cartesian Products of Graphs
نویسندگان
چکیده
The distinguishing chromatic number χD (G) of a graph G is the least integer k such that there is a proper k-coloring of G which is not preserved by any nontrivial automorphism of G. We study the distinguishing chromatic number of Cartesian products of graphs by focusing on how much it can exceed the trivial lower bound of the chromatic number χ(·). Our main result is that for every graph G, there exists a constant dG such that for all d ≥ dG the distinguishing chromatic number of Gd is at most χ(G)+1, where Gd is the Cartesian product of d copies of G. We also prove that for d ≥ 5, the Cartesian product of d complete graphs has distinguishing chromatic number at most one more than the corresponding chromatic number, and we determine the distinguishing chromatic number of hypercubes exactly.
منابع مشابه
The distinguishing chromatic number of bipartite graphs of girth at least six
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
متن کاملThe distinguishing chromatic number of Cartesian products of two complete graphs
A labeling of a graph G is distinguishing if it is only preserved by the trivial automorphism of G. The distinguishing chromatic number of G is the smallest integer k such that G has a distinguishing labeling that is at the same time a proper vertex coloring. The distinguishing chromatic number of the Cartesian product Kk Kn is determined for all k and n. In most of the cases it is equal to the...
متن کاملEquitable Colorings of Cartesian Product Graphs of Wheels with Complete Bipartite Graphs
By the sorting method of vertices, the equitable chromatic number and the equitable chromatic threshold of the Cartesian products of wheels with bipartite graphs are obtained. Key–Words: Cartesian product, Equitable coloring, Equitable chromatic number, Equitable chromatic threshold
متن کاملEquitable Colorings of Cartesian Products of Fans with Bipartite Graphs
In this paper, by the sorting method of vertices, it is obtained that the equitable chromatic number and the equitable chromatic threshold of the Cartesian products of fans with bipartite graphs.
متن کاملOn the packing chromatic number of Cartesian products, hexagonal lattice, and trees
The packing chromatic number χρ(G) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into packings with pairwise different widths. Several lower and upper bounds are obtained for the packing chromatic number of Cartesian products of graphs. It is proved that the packing chromatic number of the infinite hexagonal lattice lies between 6 and 8. Optimal lower a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 24 شماره
صفحات -
تاریخ انتشار 2010